3.2.58 \(\int \frac {\sin ^4(e+f x)}{(a+b \sin ^2(e+f x))^{3/2}} \, dx\) [158]

Optimal. Leaf size=202 \[ \frac {a \cos (e+f x) \sin (e+f x)}{b (a+b) f \sqrt {a+b \sin ^2(e+f x)}}+\frac {(2 a+b) \sqrt {\cos ^2(e+f x)} E\left (\sin ^{-1}(\sin (e+f x))|-\frac {b}{a}\right ) \sec (e+f x) \sqrt {a+b \sin ^2(e+f x)}}{b^2 (a+b) f \sqrt {1+\frac {b \sin ^2(e+f x)}{a}}}-\frac {2 a \sqrt {\cos ^2(e+f x)} F\left (\sin ^{-1}(\sin (e+f x))|-\frac {b}{a}\right ) \sec (e+f x) \sqrt {1+\frac {b \sin ^2(e+f x)}{a}}}{b^2 f \sqrt {a+b \sin ^2(e+f x)}} \]

[Out]

a*cos(f*x+e)*sin(f*x+e)/b/(a+b)/f/(a+b*sin(f*x+e)^2)^(1/2)+(2*a+b)*EllipticE(sin(f*x+e),(-b/a)^(1/2))*sec(f*x+
e)*(cos(f*x+e)^2)^(1/2)*(a+b*sin(f*x+e)^2)^(1/2)/b^2/(a+b)/f/(1+b*sin(f*x+e)^2/a)^(1/2)-2*a*EllipticF(sin(f*x+
e),(-b/a)^(1/2))*sec(f*x+e)*(cos(f*x+e)^2)^(1/2)*(1+b*sin(f*x+e)^2/a)^(1/2)/b^2/f/(a+b*sin(f*x+e)^2)^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.13, antiderivative size = 202, normalized size of antiderivative = 1.00, number of steps used = 7, number of rules used = 7, integrand size = 25, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.280, Rules used = {3267, 481, 538, 437, 435, 432, 430} \begin {gather*} -\frac {2 a \sqrt {\cos ^2(e+f x)} \sec (e+f x) \sqrt {\frac {b \sin ^2(e+f x)}{a}+1} F\left (\text {ArcSin}(\sin (e+f x))\left |-\frac {b}{a}\right .\right )}{b^2 f \sqrt {a+b \sin ^2(e+f x)}}+\frac {(2 a+b) \sqrt {\cos ^2(e+f x)} \sec (e+f x) \sqrt {a+b \sin ^2(e+f x)} E\left (\text {ArcSin}(\sin (e+f x))\left |-\frac {b}{a}\right .\right )}{b^2 f (a+b) \sqrt {\frac {b \sin ^2(e+f x)}{a}+1}}+\frac {a \sin (e+f x) \cos (e+f x)}{b f (a+b) \sqrt {a+b \sin ^2(e+f x)}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[Sin[e + f*x]^4/(a + b*Sin[e + f*x]^2)^(3/2),x]

[Out]

(a*Cos[e + f*x]*Sin[e + f*x])/(b*(a + b)*f*Sqrt[a + b*Sin[e + f*x]^2]) + ((2*a + b)*Sqrt[Cos[e + f*x]^2]*Ellip
ticE[ArcSin[Sin[e + f*x]], -(b/a)]*Sec[e + f*x]*Sqrt[a + b*Sin[e + f*x]^2])/(b^2*(a + b)*f*Sqrt[1 + (b*Sin[e +
 f*x]^2)/a]) - (2*a*Sqrt[Cos[e + f*x]^2]*EllipticF[ArcSin[Sin[e + f*x]], -(b/a)]*Sec[e + f*x]*Sqrt[1 + (b*Sin[
e + f*x]^2)/a])/(b^2*f*Sqrt[a + b*Sin[e + f*x]^2])

Rule 430

Int[1/(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_)^2]), x_Symbol] :> Simp[(1/(Sqrt[a]*Sqrt[c]*Rt[-d/c, 2]
))*EllipticF[ArcSin[Rt[-d/c, 2]*x], b*(c/(a*d))], x] /; FreeQ[{a, b, c, d}, x] && NegQ[d/c] && GtQ[c, 0] && Gt
Q[a, 0] &&  !(NegQ[b/a] && SimplerSqrtQ[-b/a, -d/c])

Rule 432

Int[1/(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_)^2]), x_Symbol] :> Dist[Sqrt[1 + (d/c)*x^2]/Sqrt[c + d*
x^2], Int[1/(Sqrt[a + b*x^2]*Sqrt[1 + (d/c)*x^2]), x], x] /; FreeQ[{a, b, c, d}, x] &&  !GtQ[c, 0]

Rule 435

Int[Sqrt[(a_) + (b_.)*(x_)^2]/Sqrt[(c_) + (d_.)*(x_)^2], x_Symbol] :> Simp[(Sqrt[a]/(Sqrt[c]*Rt[-d/c, 2]))*Ell
ipticE[ArcSin[Rt[-d/c, 2]*x], b*(c/(a*d))], x] /; FreeQ[{a, b, c, d}, x] && NegQ[d/c] && GtQ[c, 0] && GtQ[a, 0
]

Rule 437

Int[Sqrt[(a_) + (b_.)*(x_)^2]/Sqrt[(c_) + (d_.)*(x_)^2], x_Symbol] :> Dist[Sqrt[a + b*x^2]/Sqrt[1 + (b/a)*x^2]
, Int[Sqrt[1 + (b/a)*x^2]/Sqrt[c + d*x^2], x], x] /; FreeQ[{a, b, c, d}, x] && NegQ[d/c] && GtQ[c, 0] &&  !GtQ
[a, 0]

Rule 481

Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] :> Simp[(-a)*e^(
2*n - 1)*(e*x)^(m - 2*n + 1)*(a + b*x^n)^(p + 1)*((c + d*x^n)^(q + 1)/(b*n*(b*c - a*d)*(p + 1))), x] + Dist[e^
(2*n)/(b*n*(b*c - a*d)*(p + 1)), Int[(e*x)^(m - 2*n)*(a + b*x^n)^(p + 1)*(c + d*x^n)^q*Simp[a*c*(m - 2*n + 1)
+ (a*d*(m - n + n*q + 1) + b*c*n*(p + 1))*x^n, x], x], x] /; FreeQ[{a, b, c, d, e, q}, x] && NeQ[b*c - a*d, 0]
 && IGtQ[n, 0] && LtQ[p, -1] && GtQ[m - n + 1, n] && IntBinomialQ[a, b, c, d, e, m, n, p, q, x]

Rule 538

Int[((e_) + (f_.)*(x_)^(n_))/(Sqrt[(a_) + (b_.)*(x_)^(n_)]*Sqrt[(c_) + (d_.)*(x_)^(n_)]), x_Symbol] :> Dist[f/
b, Int[Sqrt[a + b*x^n]/Sqrt[c + d*x^n], x], x] + Dist[(b*e - a*f)/b, Int[1/(Sqrt[a + b*x^n]*Sqrt[c + d*x^n]),
x], x] /; FreeQ[{a, b, c, d, e, f, n}, x] &&  !(EqQ[n, 2] && ((PosQ[b/a] && PosQ[d/c]) || (NegQ[b/a] && (PosQ[
d/c] || (GtQ[a, 0] && ( !GtQ[c, 0] || SimplerSqrtQ[-b/a, -d/c]))))))

Rule 3267

Int[sin[(e_.) + (f_.)*(x_)]^(m_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]^2)^(p_.), x_Symbol] :> With[{ff = FreeF
actors[Sin[e + f*x], x]}, Dist[ff^(m + 1)*(Sqrt[Cos[e + f*x]^2]/(f*Cos[e + f*x])), Subst[Int[x^m*((a + b*ff^2*
x^2)^p/Sqrt[1 - ff^2*x^2]), x], x, Sin[e + f*x]/ff], x]] /; FreeQ[{a, b, e, f, p}, x] && IntegerQ[m/2] &&  !In
tegerQ[p]

Rubi steps

\begin {align*} \int \frac {\sin ^4(e+f x)}{\left (a+b \sin ^2(e+f x)\right )^{3/2}} \, dx &=\frac {\left (\sqrt {\cos ^2(e+f x)} \sec (e+f x)\right ) \text {Subst}\left (\int \frac {x^4}{\sqrt {1-x^2} \left (a+b x^2\right )^{3/2}} \, dx,x,\sin (e+f x)\right )}{f}\\ &=\frac {a \cos (e+f x) \sin (e+f x)}{b (a+b) f \sqrt {a+b \sin ^2(e+f x)}}-\frac {\left (\sqrt {\cos ^2(e+f x)} \sec (e+f x)\right ) \text {Subst}\left (\int \frac {a+(-2 a-b) x^2}{\sqrt {1-x^2} \sqrt {a+b x^2}} \, dx,x,\sin (e+f x)\right )}{b (a+b) f}\\ &=\frac {a \cos (e+f x) \sin (e+f x)}{b (a+b) f \sqrt {a+b \sin ^2(e+f x)}}-\frac {\left (2 a \sqrt {\cos ^2(e+f x)} \sec (e+f x)\right ) \text {Subst}\left (\int \frac {1}{\sqrt {1-x^2} \sqrt {a+b x^2}} \, dx,x,\sin (e+f x)\right )}{b^2 f}-\frac {\left ((-2 a-b) \sqrt {\cos ^2(e+f x)} \sec (e+f x)\right ) \text {Subst}\left (\int \frac {\sqrt {a+b x^2}}{\sqrt {1-x^2}} \, dx,x,\sin (e+f x)\right )}{b^2 (a+b) f}\\ &=\frac {a \cos (e+f x) \sin (e+f x)}{b (a+b) f \sqrt {a+b \sin ^2(e+f x)}}-\frac {\left ((-2 a-b) \sqrt {\cos ^2(e+f x)} \sec (e+f x) \sqrt {a+b \sin ^2(e+f x)}\right ) \text {Subst}\left (\int \frac {\sqrt {1+\frac {b x^2}{a}}}{\sqrt {1-x^2}} \, dx,x,\sin (e+f x)\right )}{b^2 (a+b) f \sqrt {1+\frac {b \sin ^2(e+f x)}{a}}}-\frac {\left (2 a \sqrt {\cos ^2(e+f x)} \sec (e+f x) \sqrt {1+\frac {b \sin ^2(e+f x)}{a}}\right ) \text {Subst}\left (\int \frac {1}{\sqrt {1-x^2} \sqrt {1+\frac {b x^2}{a}}} \, dx,x,\sin (e+f x)\right )}{b^2 f \sqrt {a+b \sin ^2(e+f x)}}\\ &=\frac {a \cos (e+f x) \sin (e+f x)}{b (a+b) f \sqrt {a+b \sin ^2(e+f x)}}+\frac {(2 a+b) \sqrt {\cos ^2(e+f x)} E\left (\sin ^{-1}(\sin (e+f x))|-\frac {b}{a}\right ) \sec (e+f x) \sqrt {a+b \sin ^2(e+f x)}}{b^2 (a+b) f \sqrt {1+\frac {b \sin ^2(e+f x)}{a}}}-\frac {2 a \sqrt {\cos ^2(e+f x)} F\left (\sin ^{-1}(\sin (e+f x))|-\frac {b}{a}\right ) \sec (e+f x) \sqrt {1+\frac {b \sin ^2(e+f x)}{a}}}{b^2 f \sqrt {a+b \sin ^2(e+f x)}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.47, size = 136, normalized size = 0.67 \begin {gather*} \frac {a \left (2 (2 a+b) \sqrt {\frac {2 a+b-b \cos (2 (e+f x))}{a}} E\left (e+f x\left |-\frac {b}{a}\right .\right )-4 (a+b) \sqrt {\frac {2 a+b-b \cos (2 (e+f x))}{a}} F\left (e+f x\left |-\frac {b}{a}\right .\right )+\sqrt {2} b \sin (2 (e+f x))\right )}{2 b^2 (a+b) f \sqrt {2 a+b-b \cos (2 (e+f x))}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[Sin[e + f*x]^4/(a + b*Sin[e + f*x]^2)^(3/2),x]

[Out]

(a*(2*(2*a + b)*Sqrt[(2*a + b - b*Cos[2*(e + f*x)])/a]*EllipticE[e + f*x, -(b/a)] - 4*(a + b)*Sqrt[(2*a + b -
b*Cos[2*(e + f*x)])/a]*EllipticF[e + f*x, -(b/a)] + Sqrt[2]*b*Sin[2*(e + f*x)]))/(2*b^2*(a + b)*f*Sqrt[2*a + b
 - b*Cos[2*(e + f*x)]])

________________________________________________________________________________________

Maple [A]
time = 8.82, size = 241, normalized size = 1.19

method result size
default \(-\frac {a \left (2 a \sqrt {\frac {\cos \left (2 f x +2 e \right )}{2}+\frac {1}{2}}\, \sqrt {\frac {a +b \left (\sin ^{2}\left (f x +e \right )\right )}{a}}\, \EllipticF \left (\sin \left (f x +e \right ), \sqrt {-\frac {b}{a}}\right )+2 \sqrt {\frac {\cos \left (2 f x +2 e \right )}{2}+\frac {1}{2}}\, \sqrt {\frac {a +b \left (\sin ^{2}\left (f x +e \right )\right )}{a}}\, \EllipticF \left (\sin \left (f x +e \right ), \sqrt {-\frac {b}{a}}\right ) b -2 a \sqrt {\frac {\cos \left (2 f x +2 e \right )}{2}+\frac {1}{2}}\, \sqrt {\frac {a +b \left (\sin ^{2}\left (f x +e \right )\right )}{a}}\, \EllipticE \left (\sin \left (f x +e \right ), \sqrt {-\frac {b}{a}}\right )-\sqrt {\frac {\cos \left (2 f x +2 e \right )}{2}+\frac {1}{2}}\, \sqrt {\frac {a +b \left (\sin ^{2}\left (f x +e \right )\right )}{a}}\, \EllipticE \left (\sin \left (f x +e \right ), \sqrt {-\frac {b}{a}}\right ) b +\left (\sin ^{3}\left (f x +e \right )\right ) b -b \sin \left (f x +e \right )\right )}{b^{2} \left (a +b \right ) \cos \left (f x +e \right ) \sqrt {a +b \left (\sin ^{2}\left (f x +e \right )\right )}\, f}\) \(241\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sin(f*x+e)^4/(a+b*sin(f*x+e)^2)^(3/2),x,method=_RETURNVERBOSE)

[Out]

-a*(2*a*(cos(f*x+e)^2)^(1/2)*((a+b*sin(f*x+e)^2)/a)^(1/2)*EllipticF(sin(f*x+e),(-1/a*b)^(1/2))+2*(cos(f*x+e)^2
)^(1/2)*((a+b*sin(f*x+e)^2)/a)^(1/2)*EllipticF(sin(f*x+e),(-1/a*b)^(1/2))*b-2*a*(cos(f*x+e)^2)^(1/2)*((a+b*sin
(f*x+e)^2)/a)^(1/2)*EllipticE(sin(f*x+e),(-1/a*b)^(1/2))-(cos(f*x+e)^2)^(1/2)*((a+b*sin(f*x+e)^2)/a)^(1/2)*Ell
ipticE(sin(f*x+e),(-1/a*b)^(1/2))*b+sin(f*x+e)^3*b-b*sin(f*x+e))/b^2/(a+b)/cos(f*x+e)/(a+b*sin(f*x+e)^2)^(1/2)
/f

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sin(f*x+e)^4/(a+b*sin(f*x+e)^2)^(3/2),x, algorithm="maxima")

[Out]

integrate(sin(f*x + e)^4/(b*sin(f*x + e)^2 + a)^(3/2), x)

________________________________________________________________________________________

Fricas [F]
time = 0.11, size = 81, normalized size = 0.40 \begin {gather*} {\rm integral}\left (\frac {{\left (\cos \left (f x + e\right )^{4} - 2 \, \cos \left (f x + e\right )^{2} + 1\right )} \sqrt {-b \cos \left (f x + e\right )^{2} + a + b}}{b^{2} \cos \left (f x + e\right )^{4} - 2 \, {\left (a b + b^{2}\right )} \cos \left (f x + e\right )^{2} + a^{2} + 2 \, a b + b^{2}}, x\right ) \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sin(f*x+e)^4/(a+b*sin(f*x+e)^2)^(3/2),x, algorithm="fricas")

[Out]

integral((cos(f*x + e)^4 - 2*cos(f*x + e)^2 + 1)*sqrt(-b*cos(f*x + e)^2 + a + b)/(b^2*cos(f*x + e)^4 - 2*(a*b
+ b^2)*cos(f*x + e)^2 + a^2 + 2*a*b + b^2), x)

________________________________________________________________________________________

Sympy [F(-2)]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: SystemError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sin(f*x+e)**4/(a+b*sin(f*x+e)**2)**(3/2),x)

[Out]

Exception raised: SystemError >> excessive stack use: stack is 4847 deep

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sin(f*x+e)^4/(a+b*sin(f*x+e)^2)^(3/2),x, algorithm="giac")

[Out]

integrate(sin(f*x + e)^4/(b*sin(f*x + e)^2 + a)^(3/2), x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.00 \begin {gather*} \int \frac {{\sin \left (e+f\,x\right )}^4}{{\left (b\,{\sin \left (e+f\,x\right )}^2+a\right )}^{3/2}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sin(e + f*x)^4/(a + b*sin(e + f*x)^2)^(3/2),x)

[Out]

int(sin(e + f*x)^4/(a + b*sin(e + f*x)^2)^(3/2), x)

________________________________________________________________________________________